Alice MacQueen

My Ph.D. research focuses on the molecular evolution of the plant disease resistance (R) gene family, which provide some of the most spectacular examples of polymorphism in the genome.   R genes are a vital component of the secondary immune system in plants, and function by first recognizing  specific pathogen-released Avirulence genes (Avr) or cellular changes effected by these genes, and then inducing a strong defense response.  Within natural populations of A. thaliana, R genes vary widely in their copy number, basal expression, and coding sequence.  Much of this variation could be under selection to mediate between costly tradeoffs of different aspects of defense.  My research looks at three levels of R gene natural variation and seeks to better understand the selective forces generating these types of variation.

558025_10101083103593526_1967491443_n

My free time is often occupied by running, adventures in Colorado, and delving into new/live music.

Education

2009 – present
PhD Candidate in Ecology & Evolution, University of Chicago
 
2009
B.Sc. in Chemistry with a specialization in Biochemistry; B.Sc. in Biology, University of Virginia,
advisor: Doug Taylor

                             

Current projects

> Expression Plasticity of R genes May Mitigate High Fitness Tradeoffs in Arabidopsis thaliana
> Fitness costs of R gene resistance in the absence of cognate pathogen
> Molecular evolution of a complex R locus in Arabidopsis thaliana

Publications

Luo, GZ., MacQueen, A., Zheng, G., Duan, H., Dore, L., Lu, Z., Liu, J., Jia, G., Bergelson, J., He, C. Unique features of the m6A methylome in Arabidopsis thaliana. Nat.Comm. 5:5630 Nov 2014. DOI: 10.1038/ncomms6630

Sloan, DB., MacQueen, AH., Alverson, AJ., Palmer, JD., Taylor, DR. Extensive Loss of RNA Editing Sites in Rapidly Evolving Silene Mitochondrial Genomes: Selection vs. Retroprocessing as the Driving Force. Genetics 185:4(1369-U358) Aug 2010.  DOI: 10.1534/genetics.110.118000